ИЗМЕНЕНИЕ N 2 ГОСТ 25823-83 "МАРГАНЦА ДВУОКИСЬ ДЛЯ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА. ТЕХНИЧЕСКИЕ УСЛОВИЯ"

Группа Л17

Дата введения

1 ноября 1992 года

Вводная часть. Заменить дату: 1971 г. на 1985 г.:

дополнить абзацем: "Требования настоящего стандарта являются обязательными, кроме пп. 2, 17 таблицы".

Пункт 1.3. Таблица 1. Графу "Наименование показателя" дополнить показателем - 18: "18. Массовая доля титана (Тi), %, не более":

графу "Высший сорт" для показателя 18 дополнить нормой: 0,005;

графу "Первый сорт" для показателя 18 дополнить нормой: 0,01.

Пункт 4.3.1.1. Седьмой абзац. Заменить слова: "8%-ный раствор" на "раствор с массовой долей 8%".

Пункт 4.4.1. Восьмой абзац. Заменить слова: "2%-ный раствор" на "раствор с массовой долей 2%".

Пункт 4.5.1. Пятый абзац. Заменить слова: "10%-ный водный раствор" на "водный раствор с массовой долей 10%";

шестой абзац. Заменить слова: "25%-ный раствор" на "раствор с массовой долей 25%";

седьмой абзац. Заменить слова: "10%-ный раствор" на "раствор с массовой долей 10%".

Пункт 4.6.1. Седьмой абзац. Заменить слова: "25%-ный раствор" на "раствор с массовой долей 25%".

Пункт 4.7.1. Шестой абзац. Заменить слова: "10%-ный раствор" на "раствор с массовой долей 10%";

седьмой абзац. Заменить слова: "2%-ный раствор" на "раствор с массовой долей 2%".

Пункт 4.13.1. Шестой абзац. Заменить ссылку: ГОСТ 4234-77 на ГОСТ 24363-80;

шестой, седьмой абзацы. Заменить слова: "10%-ный раствор" на "раствор с массовой долей 10%".

Раздел 4 дополнить пунктами - 4.17, 4.17а, 4.18:

"4.17. Определение массовой доли титана с применением динатриевой соли хромотроповой кислоты

4.17.1. Аппаратура, реактивы и растворы

Весы лабораторные общего назначения по ГОСТ 24104-88 2-го класса точности с наибольшим пределом взвешивания 200 г.

Весы лабораторные общего назначения по ГОСТ 24104-88 3-го класса точности с наибольшим пределом взвешивания 500 г.

Фотоэлектроколориметр, погрешность показания которого по шкале коэффициента пропускания не превышает 1%.

Электроплитка по ГОСТ 14919-83.

Стакан В-1 (2)-100 ТС по ГОСТ 25336-82.

Колбы 1 (2)-50-2; 1 (2)-100-2; 1 (2)-1000-2 по ГОСТ 1770-74.

Пипетки 2-2-10; 6 (7)-2-5 по ГОСТ 20292-74.

Воронка В-36-80 ХС по ГОСТ 25336-82.

Цилиндр 1 (3)-25 по ГОСТ 1770-74.

Стаканчик для взвешивания по ГОСТ 25336-82.

Не является официальным изданием предназначено для ознакомительных целей. Бесплатно предоставляется клиентам компании «Древград» - деревянные дома.

Кислота аскорбиновая по Государственной фармакопее (Х издание, статья 6), раствор с массовой долей 2%.

Хромотроповой кислоты динатриевая соль 2-водная по ТУ 6-09-3749-74, раствор с массовой долей 1%, готовят следующим образом: 1 г динатриевой соли хромотроповой кислоты растворяют в воде, прибавляют 20 см3 раствора аскорбиновой кислоты и разбавляют раствор до объема 100 см3, раствор хранят в темной банке.

Кислота уксусная по ГОСТ 61-75 концентрированная.

Натрия гидроокись по ГОСТ 4328-77.

Ацетатно-буферный раствор, готовят следующим образом: 4 г натрия гидроокиси (результат взвешивания в граммах записывают с точностью до второго десятичного знака) помещают в мерную колбу вместимостью 1 дм3, растворяют в небольшом количестве воды, прибавляют 34 см3 уксусной кислоты, доводят объем дистиллированной водой до метки и перемешивают.

Аммиак водный по ГОСТ 3760-79 концентрированный.

Кислота серная по ГОСТ 4204-77 концентрированная.

Кислота соляная по ГОСТ 3118-77 концентрированная и разбавленная 1:4.

Аммоний сернокислый по ГОСТ 3769-78.

Вода дистиллированная по ГОСТ 6709-72.

Титана диоксид по ТУ 6-09-3811-79, ос.ч.

Раствор А, содержащий 1 мг/см3 титана, готовят по ГОСТ 4212-76, соответственно увеличив навеску, либо следующим образом: 0,167 г двуокиси титана (результат взвешивания в граммах записывают с точностью до первого десятичного знака) и 4 г сернокислого аммония (результат взвешивания в граммах записывают с точностью до первого десятичного знака) помещают в стакан, прибавляют 8,8 см3 серной кислоты, перемешивают, накрывают часовым стеклом и осторожно нагревают на плитке с асбестом до полного растворения (в течение 3 - 5 часов). Раствор охлаждают, количественно переносят в мерную колбу вместимостью 100 см3, доводят объем водой до метки и перемешивают.

Раствор Б, содержащий 0,01 мг/см3 титана, готовят соответствующим разбавлением раствора А.

4.17.2. Построение градуированного графика

В стаканы пипеткой вносят 0,5; 1,0; 2,0; 2,5 см3 раствора Б, что соответствует 0,005; 0,01; 0,02; 0,025 мг титана, прибавляют 20 см3 дистиллированной воды, 2 см3 раствора аскорбиновой кислоты и нагревают до появления белых паров. Растворы охлаждают, переносят в мерные колбы вместимостью 50 см3, прибавляют 2 см3 раствора динатриевой соли хромотроповой кислоты, доводят до рН = 2 (раствором соляной кислоты 1:4 по индикаторной бумаге), прибавляют 10 см3 ацетатно-буферного раствора, доливают до метки водой и перемешивают. Через 10 мин измеряют оптическую плотность растворов по отношению к контрольному раствору, содержащему указанные выше реактивы, кроме стандартного раствора Б, при длине волны $\frac{3}{2}$ = 460 нм в кюветах с толщиной поглощающего свет слоя 50 мм.

По полученным данным строят градуировочный график, откладывая на оси абсцисс значения массы титана, содержащиеся в стандартных растворах, в миллиграммах, а на оси ординат - соответствующие им значения оптических плотностей.

Для построения каждой точки градуировочного графика вычисляют среднее арифметическое значение оптической плотности трех параллельных определений. Градуировочный график должен иметь вид прямой линии.

4.17.3. Проведение анализа

Около 1,5 г двуокиси марганца (результат взвешивания в граммах записывают с точностью до второго десятичного знака), помещают в стакан, прибавляют 30 см3 концентрированной соляной кислоты, накрывают часовым стеклом и нагревают до полного растворения твердых частиц.

Стекло снимают, обмывают водой и выпаривают раствор до влажных солей. Охлаждают, прибавляют 25 см3 воды, перемешивают до растворения осадка и фильтруют через двойной фильтр, обмывая стенки стакана водой, в мерную колбу вместимостью 100 см3, доливают до метки водой и перемешивают.

10 см3 полученного раствора вносят пипеткой в стакан, прибавляют 10 см3 воды, 2 см3 аскорбиновой кислоты, нагревают до появления белых паров, охлаждают, переносят в мерную колбу вместимостью 50 см3, прибавляют 2 см3 раствора динатриевой соли хромотроповой кислоты, доводят до рН = 2 (раствором аммиака или соляной кислоты 1:4 по индикаторной бумаге). Далее поступают, как при построении градуировочного графика.

4.17.4. Обработка результатов

Массовую долю титана ($X_{\rm LL}$) в процентах вычисляют по формуле

$$X_{13} = \frac{m_1 \cdot 100 \cdot 100}{m \cdot V \cdot 1000}$$

где $\frac{m}{}$ - масса титана, найденная по градуировочному графику, мг;

т - масса навески двуокиси марганца, г;

V - объем анализируемого раствора, отобранный для анализа, см3.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,002%.

Допускаемая абсолютная суммарная погрешность результата анализа +/- 0,001% при доверительной вероятности Р = 0,95.

4.17а. Определение массовой доли титана с применением диантипирилметана

4.17.1а. Аппаратура, реактивы и растворы

Весы лабораторные общего назначения по ГОСТ 24104-88 2-го класса точности с наибольшим пределом взвешивания 200 г.

Весы лабораторные общего назначения по ГОСТ 24104-88 3-го класса точности с наибольшим пределом взвешивания 500 г.

Фотоэлектроколориметр, погрешность показания которого по шкале коэффициента пропускания не превышает 1%.

Набор гирь Г-2-210 по ГОСТ 7328-82.

Электроплитка по ГОСТ 14919-83.

Стаканчик для взвешивания по ГОСТ 25336-82.

Пипетки 2-2-2; 6-5-2; 6-2-10 по ГОСТ 20292-74.

Колбы мерные 2-50-2; 2-100-2 по ГОСТ 1770-74.

Цилиндр 1-25 по ГОСТ 1770-74.

Стакан В-1-100 ТС по ГОСТ 25336-82.

Часовое стекло.

Кислота аскорбиновая по Государственной фармакопее (Х издание, статья 6), раствор с массовой долей 10%.

Кислота соляная по ГОСТ 3118-77, ч.д.а., концентрированная, раствор концентрации с (HCl) = 2 моль/дм3 (2 н.).

Кислота серная по ГОСТ 4204-77, х.ч., концентрированная.

Диантипирилметан по ТУ 6-09-3835-77, ч.д.а., раствор массовой концентрации 10 г/дм3 в растворе соляной кислоты концентрации с (HCI) = 2 моль/дм3 (2 н.).

Титана диоксид по ТУ 6-09-3811-79, ос. ч.

Аммоний серно-кислый по ГОСТ 3769-78.

Вода дистиллированная по ГОСТ 6709-72.

Гидроксиламина гидрохлорид по ГОСТ 5456-79, ч.д.а.

Раствор А, содержащий 1 мг/см3 титана, готовят по ГОСТ 4212-76, соответственно увеличив навеску, либо следующим образом: 0,167 г двуокиси титана (результат взвешивания в граммах записывают с точностью до третьего десятичного знака) и 4 г сернокислого аммония (результат взвешивания в граммах записывают с точностью до первого десятичного знака) помещают в стакан, прибавляют 8,8 см3 серной кислоты, перемешивают, накрывают часовым стеклом и осторожно нагревают на плитке с асбестом до полного растворения (в течение 3 - 5 ч). Раствор охлаждают, количественно переносят в мерную колбу вместимостью 100 см3, доводят объем водой до метки и перемешивают.

Раствор Б, содержащий $0{,}01\,$ мг/см $3\,$ титана, готовят соответствующим разбавлением раствора А.

4.17.2а. Построение градуировочного графика

В пять мерных колб вместимостью по 50 см3 вносят пипеткой вместимостью 5 см3 последовательно 1, 2, 3, 4, 5 см3 раствора Б, по 5 см3 раствора аскорбиновой кислоты и оставляют стоять на 3 мин для количественного восстановления железа. В каждую мерную колбу прибавляют по 12 см3 раствора диантипирилметана, доводят до метки раствором соляной кислоты и тщательно перемешивают. Одновременно готовят раствор сравнения, содержащий указанные выше реактивы, кроме стандартного раствора Б. Через 60 мин измеряют оптическую плотность градуировочных растворов по отношению к раствору сравнения на фотоэлектроколориметре со светофильтром при длине волны $\lambda = 400$ нм в кювете с толщиной поглощающего свет слоя 50 мм. По полученным данным строят градуировочный график, откладывая на оси абсцисс значения массы титана в миллиграммах, а на оси ординат - соответствующие им значения оптических плотностей.

Не является официальным изданием предназначено для ознакомительных целей. Бесплатно предоставляется клиентам компании «Древград» - деревянные дома.

Для построения каждой точки градуировочного графика вычисляют среднее арифметическое значение оптической плотности трех параллельных определений. Градуировочный график должен иметь вид прямой линии.

4.17.3а. Проведение анализа

Навеску массой 1 - 2 г (результат взвешивания в граммах записывают с точностью до второго десятичного знака) помещают в стакан, вносят цилиндром 25 см3 концентрированной соляной кислоты, накрывают часовым стеклом и нагревают на электроплитке до полного исчезновения частиц осадка. Стекло снимают, обмывают дистиллированной водой и выпаривают раствор до влажных солей. Остаток растворяют в 20 см3 дистиллированной воды и количественно переносят в мерную колбу на 100 см3. Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Отбирают пипеткой 2 - 5 см3 (в зависимости от содержания титана) раствора в мерную колбу вместимостью 50 см3, прибавляют 10 см3 раствора соляной кислоты концентрации 2 моль/дм3, 5 см3 раствора аскорбиновой кислоты и оставляют стоять 3 мин. Затем прибавляют 12 см3 раствора диантипирилметана и доводят раствор до метки раствором соляной кислоты концентрации 2 моль/дм3, перемешивают. Через 1 ч измеряют оптическую плотность раствора при условиях, указанных в п. 4.17.2а. Раствор сравнения готовят так же, как при построении градуировочного графика.

4.17.4а. Обработка результатов

Массовую долю титана (X_{14}) вычисляют по формуле

$$X_{14} = \frac{m_1 \cdot 100 \cdot 100}{m \cdot V \cdot 1000}$$

где та - масса титана, найденная по градуировочному графику, мг;

т - масса навески, г;

V - объем анализируемого раствора, отобранный для анализа, см3.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,002%.

Допускаемая абсолютная суммарная погрешность результата анализа +/- 0,001% при доверительной вероятности P = 0,95.

Примечание. При отсутствии аскорбиновой кислоты в качестве восстановителя железа (III) можно использовать гидроксиламина гидрохлорид. Если аскорбиновая кислота лучше действует как восстановитель в кислой среде (pH = 0 - 1), то гидроксиламина гидрохлорид восстанавливает железо (III) в течение нескольких минут в слабокислой среде (pH = 3 - 4).

Допускается применение инструментальных методов определения, обеспечивающих точность определения не ниже арбитражной.

При возникновении разногласий определение массовой доли титана проводят с применением динатриевой соли хромотроповой кислоты.

4.18. Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных".

Пункт 5.3. Исключить ссылку: ГОСТ 21929-76.